aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/main.zig
blob: 6149c495b39fa566c030a9d28be644c71e005134 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
const std = @import("std");
const debug = std.debug;
const math = std.math;
const ArrayList = std.ArrayList;

const Vec3 = struct {
    x: f64,
    y: f64,
    z: f64,

    pub fn norm(v: Vec3) f64 {
        return @sqrt(v.normSquared());
    }

    pub fn normSquared(v: Vec3) f64 {
        return v.x * v.x + v.y * v.y + v.z * v.z;
    }

    pub fn dot(u: Vec3, v: Vec3) f64 {
        return u.x * v.x + u.y * v.y + u.z * v.z;
    }

    pub fn cross(u: Vec3, v: Vec3) Vec3 {
        return Vec3{
            .x = u.y * v.z - u.z * v.y,
            .y = u.z * v.x - u.x * v.z,
            .z = u.x * v.y - u.y * v.x,
        };
    }

    pub fn normalized(v: Vec3) Vec3 {
        const n = v.norm();
        if (n == 0.0) {
            return v;
        } else {
            return v.div(n);
        }
    }

    pub fn add(u: Vec3, v: Vec3) Vec3 {
        return Vec3{
            .x = u.x + v.x,
            .y = u.y + v.y,
            .z = u.z + v.z,
        };
    }

    pub fn sub(u: Vec3, v: Vec3) Vec3 {
        return Vec3{
            .x = u.x - v.x,
            .y = u.y - v.y,
            .z = u.z - v.z,
        };
    }

    pub fn mul(v: Vec3, t: f64) Vec3 {
        return Vec3{
            .x = v.x * t,
            .y = v.y * t,
            .z = v.z * t,
        };
    }

    pub fn div(v: Vec3, t: f64) Vec3 {
        return Vec3{
            .x = v.x / t,
            .y = v.y / t,
            .z = v.z / t,
        };
    }

    pub fn random01(rand: std.rand.Random) Vec3 {
        return Vec3{
            .x = randomReal01(rand),
            .y = randomReal01(rand),
            .z = randomReal01(rand),
        };
    }

    pub fn random(rand: std.rand.Random, min: f64, max: f64) Vec3 {
        return Vec3{
            .x = randomReal(rand, min, max),
            .y = randomReal(rand, min, max),
            .z = randomReal(rand, min, max),
        };
    }

    // for debugging
    pub fn pp(v: Vec3) void {
        debug.print("{} {} {}\n", .{ v.x, v.y, v.z });
    }
};

fn randomPointInUnitSphere(rand: std.rand.Random) Vec3 {
    while (true) {
        const p = Vec3.random(rand, -1.0, 1.0);
        if (p.norm() >= 1) continue;
        return p;
    }
}

fn randomUnitVector(rand: std.rand.Random) Vec3 {
    return randomPointInUnitSphere(rand).normalized();
}

const Point3 = Vec3;
const Color = Vec3;

const Ray = struct {
    origin: Vec3,
    dir: Vec3,

    pub fn at(r: Ray, t: f64) Point3 {
        return r.origin.add(r.dir.mul(t));
    }
};

const HitRecord = struct {
    // The point where the ray and the hittable hits.
    p: Point3,
    // The normal of the hittable at p.
    normal: Vec3,
    // p = ray.at(t)
    t: f64,
    // True if the ray hits the hittable from the front face, i.e., outside of it.
    front_face: bool,
};

const HittableTag = enum {
    sphere,
    list,
};

const Hittable = union(HittableTag) {
    sphere: Sphere,
    list: HittableList,

    fn hit(h: Hittable, r: Ray, t_min: f64, t_max: f64, record: *HitRecord) bool {
        return switch (h) {
            HittableTag.sphere => |sphere| sphere.hit(r, t_min, t_max, record),
            HittableTag.list => |list| list.hit(r, t_min, t_max, record),
        };
    }
};

const Sphere = struct {
    center: Point3,
    radius: f64,

    fn hit(sphere: Sphere, r: Ray, t_min: f64, t_max: f64, record: *HitRecord) bool {
        const oc = r.origin.sub(sphere.center);
        const a = r.dir.normSquared();
        const half_b = Vec3.dot(oc, r.dir);
        const c = oc.normSquared() - sphere.radius * sphere.radius;

        const discriminant = half_b * half_b - a * c;
        if (discriminant < 0.0) {
            // r does not intersect the sphere.
            return false;
        }
        const sqrtd = @sqrt(discriminant);

        // Find the nearest root that lies in the acceptable range.
        var root = (-half_b - sqrtd) / a;
        if (root < t_min or t_max < root) {
            root = (-half_b + sqrtd) / a;
            if (root < t_min or t_max < root) {
                // out of range
                return false;
            }
        }

        record.t = root;
        record.p = r.at(root);
        const outward_normal = (record.p.sub(sphere.center)).div(sphere.radius);
        record.front_face = Vec3.dot(outward_normal, r.dir) < 0.0;
        if (record.front_face) {
            record.normal = outward_normal;
        } else {
            record.normal = outward_normal.mul(-1.0);
        }

        return true;
    }
};

const HittableList = struct {
    objects: ArrayList(*const Hittable),

    fn hit(list: HittableList, r: Ray, t_min: f64, t_max: f64, record: *HitRecord) bool {
        var hit_anything = false;
        var closest_so_far = t_max;

        for (list.objects.items) |object| {
            var rec: HitRecord = undefined;
            if (object.hit(r, t_min, closest_so_far, &rec)) {
                hit_anything = true;
                closest_so_far = rec.t;
                record.* = rec;
            }
        }
        return hit_anything;
    }
};

const inf = math.inf(f64);
const pi = math.pi(f64);

fn deg2rad(degree: f64) f64 {
    return degree * pi / 180.0;
}

// [0, 1)
fn randomReal01(rand: std.rand.Random) f64 {
    return rand.float(f64);
}

// [min, max)
fn randomReal(rand: std.rand.Random, min: f64, max: f64) f64 {
    return min + randomReal01(rand) * (max - min);
}

const Camera = struct {
    origin: Point3,
    horizontal: Vec3,
    vertical: Vec3,
    lower_left_corner: Point3,

    fn init(viewport_width: f64, viewport_height: f64, focal_length: f64) Camera {
        const origin = Point3{ .x = 0.0, .y = 0.0, .z = 0.0 };
        const horizontal = Vec3{ .x = viewport_width, .y = 0.0, .z = 0.0 };
        const vertical = Vec3{ .x = 0.0, .y = viewport_height, .z = 0.0 };
        const lower_left_corner = origin.sub(horizontal.div(2.0)).sub(vertical.div(2.0)).sub(Vec3{ .x = 0.0, .y = 0.0, .z = focal_length });

        return Camera{
            .origin = origin,
            .horizontal = horizontal,
            .vertical = vertical,
            .lower_left_corner = lower_left_corner,
        };
    }

    fn getRay(camera: Camera, u: f64, v: f64) Ray {
        const dir = camera.lower_left_corner.add(camera.horizontal.mul(u)).add(camera.vertical.mul(v)).sub(camera.origin);
        return Ray{
            .origin = camera.origin,
            .dir = dir,
        };
    }
};

fn rayColor(r: Ray, world: Hittable, rand: std.rand.Random, depth: u32) Color {
    var rec: HitRecord = undefined;
    if (depth == 0) {
        // If we've exceeded the ray bounce limit, no more ligth is gathered.
        return Color{ .x = 0.0, .y = 0.0, .z = 0.0 };
    }
    if (world.hit(r, 0.001, inf, &rec)) {
        const target = rec.p.add(rec.normal).add(randomUnitVector(rand));
        return rayColor(Ray{ .origin = rec.p, .dir = target.sub(rec.p) }, world, rand, depth - 1).mul(0.5);
    }
    const unit_dir = r.dir.normalized();
    const s = 0.5 * (unit_dir.y + 1.0);
    return (Color{ .x = 1.0, .y = 1.0, .z = 1.0 }).mul(1.0 - s).add((Color{ .x = 0.5, .y = 0.7, .z = 1.0 }).mul(s));
}

fn writeColor(out: anytype, c: Color, samples_per_pixel: u32) !void {
    const scale = 1.0 / @intToFloat(f64, samples_per_pixel);
    try out.print("{} {} {}\n", .{
        @floatToInt(u8, 256.0 * math.clamp(@sqrt(c.x * scale), 0.0, 0.999)),
        @floatToInt(u8, 256.0 * math.clamp(@sqrt(c.y * scale), 0.0, 0.999)),
        @floatToInt(u8, 256.0 * math.clamp(@sqrt(c.z * scale), 0.0, 0.999)),
    });
}

pub fn main() !void {
    var gpa = std.heap.GeneralPurposeAllocator(.{}){};
    const allocator = gpa.allocator();
    defer debug.assert(!gpa.deinit());

    var rng = std.rand.DefaultPrng.init(42);
    var rand = rng.random();

    // Image
    const aspect_ratio = 16.0 / 9.0;
    const image_width = 400;
    const image_height = @floatToInt(comptime_int, @divTrunc(image_width, aspect_ratio));
    const samples_per_pixel = 100;
    const max_depth = 50;

    // World
    const sphere1 = Hittable{ .sphere = Sphere{ .center = Point3{ .x = 0.0, .y = 0.0, .z = -1.0 }, .radius = 0.5 } };
    const sphere2 = Hittable{ .sphere = Sphere{ .center = Point3{ .x = 0.0, .y = -100.5, .z = -1.0 }, .radius = 100.0 } };
    var hittable_objects = ArrayList(*const Hittable).init(allocator);
    try hittable_objects.append(&sphere1);
    try hittable_objects.append(&sphere2);
    const world = Hittable{ .list = HittableList{ .objects = hittable_objects } };
    defer hittable_objects.deinit();

    // Camera
    const viewport_height = 2.0;
    const viewport_width = aspect_ratio * viewport_height;
    const focal_length = 1.0;
    const camera = Camera.init(viewport_width, viewport_height, focal_length);

    // Render
    const stdout_file = std.io.getStdOut().writer();
    var bw = std.io.bufferedWriter(stdout_file);
    const stdout = bw.writer();

    try stdout.print("P3\n{} {}\n255\n", .{ image_width, image_height });

    var j: i32 = image_height - 1;
    while (j >= 0) : (j -= 1) {
        std.debug.print("\rScanlines remaining: {}     ", .{j});
        var i: i32 = 0;
        while (i < image_width) : (i += 1) {
            var s: u32 = 0;
            var pixelColor = Color{ .x = 0.0, .y = 0.0, .z = 0.0 };
            while (s < samples_per_pixel) : (s += 1) {
                const u = (@intToFloat(f64, i) + randomReal01(rand)) / (image_width - 1);
                const v = (@intToFloat(f64, j) + randomReal01(rand)) / (image_height - 1);
                const r = camera.getRay(u, v);
                pixelColor = pixelColor.add(rayColor(r, world, rand, max_depth));
            }
            try writeColor(stdout, pixelColor, samples_per_pixel);
        }
    }

    try bw.flush();
}